

Shock Wave Treatment for Achilles Tendinopathy

Jan D. Rompe, MD Professor of Orthopaedics OrthoTrauma Evaluation Center Mainz, Germany

ESWT Summer Meeting August 24 - 26, 2007

Treatment options for AT

Rest **Orthotic** Treatment Electrotherapy Training Nonsteroidal Eccentric Loading Antiinflammatory Medication Strength Electrotherapy **Glyceryl** Trinitrate Patches **Corticoid Injections** Sclerosing Botulinum Injections Injections **Surgical Revision**

Ortho Trauma Evaluation Center Mainz

Alfredson and Cook 2007; Br J Sports Med 41:211

Although ESWT has been trialled in several tendons and fascial structures, **there have been no randomised controlled trials in the Achilles tendon.** In other structures ESWT when compared to placebo decreases pain, but may be beneficial in relieving pain while rehabilitation of the musculotendinous structures continues.

9

Alfredson and Cook 2007; Br J Sports Med 41:211-216

Scandinavian Members ?

INTERNATIONAL SOCIETY FOR MUSCULOSKELETAL SHOCKWAVE THERAPY

- **<u>Radial</u>** shock wave treatment "Clinical Focusing"
- 2000 impulse, 2-4 bar
- No local anaesthesia

• Follow-up up to 52 weeks after SWT

• 5x in weekly intervals

In the early 1990s, medi-

cal machines originally used in the field of urology for breaking up kidney stones (lithotripsy) were increasingly used to treat pseudarthrosis and break up intra-tendinous calcifications.

The radial shock wave device used by us, the "Swiss Dolorclast" (Electronic Radial System-EMS) produces so-

compressor), are administered through contact with the skin and penetrate the tissue to a depth of 3 to 4 cms. It's possible to treat superficial lesions to the soft tissues with RSWT. It is typically used for treating heels, elbows, and

The treatment eases inflammation in afflicted area and

knees.

- 3x in weekly intervals
- Follow-up 6 weeks after SWT

Shock Wave Treatment

A prospective, randomized, double-blind, controlled slime 1 is a sperformed in 102 subjects affected by intractable **non-insertional** Acbilled is non-thy, to compare the outcomes of a standard treatment with ESWT in the public some of the Achilles tendon. All patients had failed to improve after current constructions of the neutrons.

- **Focused** shock wave treatment
- 2000 impulsea, 0.25 mJ/mm²
- No local anaesthesia
- "Clinical Focusing"
- 3x in weekly intervals
- Follow-up 24 weeks after SWT

Shock Wave Treatment

Thirty-five patients with chronic **insertional Achilles terms** by year treated with 1 dose of high-energy extracorporeal shock wave therapy and the high with nonoperative therapy (control group).

One month, and 3 months, and 12 the control and ESWT group 2.8 (P < .001), respectivel

Twelve months of the table, the number of patients with successful Roles and Maudsley scores was structured at the ESWT group compared with the control group.

Furia 2006; Am J Sports Med 34:733

reatment, the mean visual analog score for

(P < .001), 7.2 and 2.9 (P < .001), and 7.0 and

- **Focused** shock wave treatment
- 3000 Impulse, 0.2 mJ/mm²
- No local anaesthesia
- "Clinical Focusing"

• 1x

• Follow-up **12 weeks** after SWT

These results provide no support for the use of shock wave therapy for treatment of patients with chronic Achilles tendon pain.

Costa et al. 2005; Clin Orthop 440: 199

- **Focused** shock wave treatment
- 1500 Impulse, 0.2 mJ/mm²
- No local anaesthesia
- "Clinical Focusing"
- 3x in monthly intervals
- Follow-up 4 weeks after SWT

What can shock wave treatment do EXPERIMENTALLY?

What can shock wave treatment do CLINICALLY?

Shock Wave Treatment

• may harm the Achilles tendon in a dose-dependent manner (2000 x 0.08 mJ/mm² vs. 0.60 mJ/mm²)

Rompe et al. 1998; JBJS 80-B: 546

Low-energy SWT 0.10 mJ/mm²

High-energy SWT 0.60 mJ/mm²

• induces neovascularization at the Achilles tendon-bone junction (500 x 0.12 mJ/mm²)

Controls

VEGF

Wang et al. 2003; J Orthop Res 21: 984

 induces healing, formation of capillaries and improves tensile strength of the Achilles tendon after a stab injury

Control 3 weeks

SWT 500 shocks 3 weeks

• induces healing of collagenase-induced Achilles tendinitis in a dose-dependent manner (0.16 mJ/mm²) Chen et al. 2004; J Orthop Res 22: 854

Control at 12 weeks

SWT 200 shocks at 12 weeks

SWT 500 shocks at 12 weeks

SWT 1000 shocks at 12 weeks

• improves the healing rate and tensile strength of the tendon-bone interface in a bone tunnel model (500 x 0.12 mJ/mm²) Wang et al. 2005; J Orthop Res 23:274

• reduces necrosis in a compromised - skin - flap model

Meirer et al. 2005; Br J Plast Surg 58: 53 Meirer et al. 2007; J Reconstr Microsurg 23: 231

 induces collateral vessels and ameliorates ischemia-induced myocardial dysfunction (3x 4000 x 0.09 mJ/mm²)

Nishida et al. 2004; Circulation 110: 3055 Fukumoto et al. 2006; Cor Artery Dis 17: 63

Low-energy SWT • induces healing of infected skin defects (5x 2000 x 0.06 mJ/mm²) Schaden et al. 2005; ISMST Vienna

7 weeks

		Help us im	prove <u>complete our br</u> i
Home	Search	Listings	Resources
fety & Effic	acy Study for the Use of Diab	f Extracorporeal Shockwaves i etic Foot Ulcers	n the Treatment of
	This study is cu Verified by Tissue Reg	rrently recruiting patients. reneration Technologies August 2006	
	Sponsored l	y: Tissue Regeneration Technolog	gies
	Information provided l	y: Tissue Regeneration Technologies	
	ClinicalTrials.gov Identifi	er: NCT00366132	
The purpose of	this clinical study is to compar- e treatment, to standard-of-ca abetes mellitus. For the purpos	e the safety and effectiveness of shocky re treatment alone to induce healing of e of this study, the definition of plantar f the foot, and the definition of chronic	vave treatment combined w a chronic plantar foot ulcer foot ulcer is a wound or op is a duration of 6 weeks or
standard-of-car subjects with di sore that involve greater with a la	ck of response to treatment.		
standard-of-car subjects with di sore that involve greater with a la Condition	ck of response to treatment.	tervention	Phase

Eccentric loading, shock wave treatment, or a wait-andsee policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial

Jan D. Rompe, Bernhard Nafe, John Furia, Nicola Maffulli

Am J Sports Med 2007; 35:374-383

Low-energy SWT					
A Randomization Plan					
from					
http://www.randomization.com			đ 🛃 🖉		
			Center Main		
1. Stretching					
2. ESWT					
3. Stretching		Den Isus'and			
4. ESWT		Kandomized			
5. ESWT		(n = 75)			
6. Wait and See		(n-75)			
7. Watt and See					
8. Stretching					
10 FSWT					
11 Wait and See					
12 FSWT					
13. Wait and See					
14. Wait and See					
15. Stretching					
16. ESWT					
17. Stretching					
18. Stretching	Eccentr. Loading	Shock Wave	Wait-and-See		
19.ESWT					
20. ESWT	(n= 25)	(n= 25)	(n= 25)		
21. Stretching		· · ·			
22. Wait and See					
24. Stratching					
25 Stretching					
26 ESWT					
27. Wait and See					
28.ESWT					
29. Wait and See					
30. Wait and See					
31. Stretching					
32. ESWT	Follow-Up 4 Months	Follow-Up 4 Months	Follow-Up 4 Months		
33. Stretching					
34. Stretching	(n= 22)	(n= 23)	(n=21)		
36 FSWT					
37 FSWT					
38. Wait and See					
39. Wait and See					
40. ESWT					
41. ESWT					
42. Stretching					
43. Wait and See					
44. Stretching	3 Groups				
40. Stretching					
Blinded Observer					
computer-generated random number list					
Subjects randomized into blocks	Evalu	lation: On-Intention-to	0-1reat		
Subjects failuoinized filto blocks					

Inclusion Criteria

- Tendinopathy
- Body of tendo Achillis
- Painful > 6 Months
- > 3 conservative therapies (Local injection mandatory)
- Pain > 4 on NRS [0-10]
- No rupture in ultrasound / MRI

Group 1: Eccentric Loading

Seventy-eight consecutive patients, having chronic painful Achilles tendinosis at the midportion (2-6 cm level) in 101 Achilles tendons were treated with eccentric calf-muscle training for 12 weeks.

In 90 of the 101 Achilles tendons (89%) with chronic painful mid-portion Achilles tendinosis, treatment was satisfactory and the patients were back on their pre-injury activity level after the 12-week training regimen. In these patients, the amount of pain during activity, registered on the VAS-scale decreased significantly from 6.7 to 1.0.

Fahlstrom et al. 2003; Knee Surg Sports Traumatol Arthrosc 11: 327

Group 2: Shock Wave Treatment

Swiss Dolorclast, EMS, Switzerland

- <u>**Radial**</u> shock wave treatment
- 2,000 impulses, 0.12 mJ/mm² (~ pressure of 2.5 bar)
- No local anaesthesia
- "Clinical Focusing"
- 3x in weekly intervals

Group 3: Wait-and-See

Patients allocated to the **wait-and-see policy** group visited their family doctor once during the intervention period of 6 weeks. Activities that provoked pain, and practical solutions (including ergonomic advice) were discussed with the patient. If necessary, paracetamol (2000-4000 mg daily) or non-steroidal anti-inflammatory drugs (NSAIDs, naproxen 1000 mg daily) were prescribed. The patient was encouraged to await further spontaneous improvement.

Smidt et al. 2002; Lancet 359: 657

- 1 further visit during 3-month period
- Practical advice
- Control of running shoes (over-pronation)
- Shoe inserts
- Conventional stretching exercises
- Paracetamol (2000 mg/d) or
- Naproxen (1000 mg/d)

Outcome Assessment

VISA- A Score (0 points - 100 points)

Pain Threshold:

minimum pressure (kg) which induced pain in the most tender area

Algometer (Pain Test-Model FPK, Wagner Instruments, Greenwich, CT)

11-point Numeric Rating Scale (NRS) (0 [best] – 10 [worst])

6-point LIKERT scale (1 [best] – 6 [worst])

Low-energy SWT is NOT SUCESSFUL under all circumstances

Forty-nine patients with chronic Achilles pain were enrolled in a double-blind randomized placebo-controlled trial. Each patient was **treated once a month** for 3 months. At **4 weeks after** the last intervention, we found **no difference** in pain relief between the shock wave therapy group and the control group.

Costa et al. 2005; Clin Orthop 440: 199

chronic patients only repetitive, 3x in weekly intervals 2000 low-energy impulses clinical focusing, NO local anaesthesia follow-up 12 weeks after last SWT

Eccentric loading is NOT SUCCESSFUL under all circumstances

We studied the effects of eccentric exercises in 34 sedentary non-athletic patients with Achilles tendinopathy.

19 patients (60%) improved with the eccentric exercise regimen. The overall average VISA-A scores at latest follow up was 50.

Sayana and Maffulli 2006; J Sci Med Sport; Epub ahead of print

less effective in sedentary patients

What are the alternatives ?

Debridement (+ Plantaris Augmentation) Percutaneous Tenotomies

What are the alternatives ?

Surgery is NOT SUCCESSFUL under all circumstances

We matched each of the 61 nonathletic patients with a diagnosis of tendinopathy of the Achilles tendon with an athletic patient with tendinopathy of the main body of the Achilles tendon of the same sex and age (+/-2 years). A match was possible for 56 patients (23 males and 33 females). **All patients undwerwent open surgery for Achilles tendinopathy.**

Of the 48 nonathletic patients, 9 underwent further surgery during the study period, and **only 25** (52%) reported an excellent or good result at 3-year follow-up. Of the 45 athletic subjects, 4 underwent further surgery during the study period, and 36 (80%) reported an excellent or good result.

Nonathletic subjects experience more prolonged recovery, more complications, and a greater risk of further surgery than athletic subjects with recalcitrant Achilles tendinopathy.

Mafulli et al. 2006; Clin J Sport Med 16: 123

Eccentric loading versus shock wave treatment for chronic tendinopathy of the insertion of tendo Achillis: a randomized controlled trial

Jan D. Rompe, John Furia, Nicola Maffulli

J Bone Joint Surg [Am] 2007; in press

Computer-generated random number list Subjects randomized into blocks 2 Groups Blinded Observer Evaluation: On-Intention-to-Treat

Inclusion Criteria

- Tendinopathy
- Insertion of tendo Achillis
- Painful > 6 Months
- > 3 conservative therapies (Local injection mandatory)
- Pain > 4 on NRS [0-10]
- No rupture in ultrasound / MRI

Group 1: Eccentric Loading

Seventy-eight consecutive patients, having chronic painful Achilles tendinosis at the midportion (2-6 cm level) in 101 Achilles tendons were treated with eccentric calf-muscle training for 12 weeks.

In 90 of the 101 Achilles tendons (89%) with chronic painful mid-portion Achilles tendinosis, treatment was satisfactory and the patients were back on their pre-injury activity level after the 12-week training regimen. In these patients, the amount of pain during activity, registered on the VAS-scale decreased significantly from 6.7 to 1.0.

Fahlstrom et al. 2003; Knee Surg Sports Traumatol Arthrosc 11: 327

Group 2: Shock Wave Treatment

Swiss Dolorclast, EMS, Switzerland

- <u>**Radial**</u> shock wave treatment
- 2,000 impulses, 0.12 mJ/mm² (~ pressure of 2.5 bar)
- No local anaesthesia
- "Clinical Focusing"
- 3x in weekly intervals

Eccentric loading is NOT SUCCESSFUL under all circumstances

50 patients with a chronic recalcitrant **insertional Achilles tendinopathy** were enrolled in a randomized controlled study to compare the effectiveness of two management strategies: Group 1: **eccentric loading**; Group 2: repetitive low-energy **shock wave therapy** (SWT).

At 4 months from baseline, for all outcome measures, group 1 and 2 differed significantly in favor of SWT. On the LIKERT scale 28% of Group 1, and 64% of Group 2 reported "completely recovered" or "much improved".

Summary

less effective in insertional Achilles tendinopathy

What are the alternatives ?

Musculoskeletal SWT

- has completely gone beyond the concept of pure physical and mechanical implications known from lithotripsy of kidney stones
- produces biological healing responses at the tissue level, including the induction of neovascularization associated with increased expression of angiogenic growth factors - BIOSURGERY
- has demonstrated good outcomes in 50-60% of various refractory tendinopathies within 3-6 months in numerous RCTs
- is safe, noninvasive and, when performed adequately, is associated with virtually no side effects / morbidity
- circumvents the need for immobilization and restricted weight bearing, usually there is no lost time from work